
Copyright © 2000, American Association for Artificial
(www.aaai.org). All rights reserved.

Biologically-inspired Agents for Priority Routing in Networks

Author information

Affiliation information
e-mail information

Abstract
This paper describes how biologically-inspired agents can be
used to solve complex routing problems incorporating prior-
itized information flow. These agents, inspired by the forag-
ing behavior of ants, exhibit the desirable characteristics of
simplicity of action and interaction. The collection of agents,
or swarm system, deals only with local knowledge and
exhibits a form of distributed control with agent communica-
tion effected through the environment. While ant-like agents
have been applied to the routing problem, previous work has
ignored the problems of agent adaptation, multi-path and
priority-based routing. These are discussed here.

Introduction
Networks today have a wide range of applications running
on them. Many would assume that making best use of net-
work capacity implies load balancing; however, this is a
simplistic assumption and ultimately it is user perception of
the quality of service offered by the network that is impor-
tant. Anyone who has used streaming audio, or IP tele-
phony services on the Internet will certainly appreciate this.

Circuit planning in a large network is a hard problem. An
off-line, or planning solution is possible. In this approach,
the set of connections to be created is known in advance
and routes for them computed to optimize a fitness func-
tion. Typically, the fitness function seeks to balance load
across nodes and links in the network and may take account
of constraints of the devices themselves and user routing
preferences.

On-line approaches are also possible. In traditional net-
works, routing protocols are often used that attempt to
maintain a global view of the network. Several agent-ori-
ented approaches have recently been proposed that appeal
to principles drawn from Swarm Intelligence (Schoonder-
woerd, Holland and Bruten 1997), (Di Caro and Dorigo
1998), (White, Pagurek and Oppacher 1998) and others. In
an on-line approach, agents compute routes for connections
in order to optimize their connection routing cost, where
cost may represent an aggregate statistic of delay, utiliza-
tion, reliability and other factors. In these approaches, a
global view of the network is not maintained, and we deal
only with information that can be measured locally. Swarm

approaches are robust with respect to the loss of individual
routing agents. Beyond the routing domain, the appeal of
swarms of biologically-inspired agents for industrial prob-
lem solving have recently been appreciated (Parunak
1998). Research into the problems and potential of multi-
ple, interacting swarms of agents is just beginning (White
2000). This paper builds on prior work by proposing rout-
ing solutions for creation of multi-cast routes, in an envi-
ronment that supports traffic prioritization. It appeals to the
SynthECA agent architecture recently proposed (White
2000).

This paper consists of 3 further sections. The next sec-
tion introduces elements of the SynthECA architecture per-
tinent to this paper. The following section describes the
algorithms used to solve routing problems, and the results
of applying them. The paper then summarizes its key mes-
sages.

SynthECA agents
Agents in the SynthECA system can be described by the
tuple, A=(E,R,C,MDF,m). The important components per-
tinent to this paper are the ideas of a chemical (C) and a
Migration Decision Function (MDF). A detailed desciption
of the architecture can be found in (White 2000).

The chemical concept is used in order to provide com-
munication between agents and to create dissipative fields
within the environment. The chemical concept is used to
provide communication with, and sensing of, the environ-
ment and provides the driving force for agent mobility. A
chemical consists of two components, an encoding and a
concentration.

The MDF is a function or rule set that is used to deter-
mine where an agent should visit next. The MDF typically
uses chemical and link cost information in order to deter-
mine the next hop in its journey through the network or
may simply follow a hard-coded route through the network.
An important consideration in designing an MDF is that it
should take advantage of gradients in chemicals that are
present in the network. In doing so, agents may take advan-
tage of the actions of other agents. Particular agents may
want to move up a gradient (attraction) or down a gradient
(repulsion). The MDF may take advantage of the pattern
matching properties of the language used for the chemistry
of the system. Consider an chemical encoding consisting of
2 bits. We might include a term in the MDF consisting of



the chemical 1#, where the # symbol matches either a 0 or a
1.

Consider a scenario where an agent has the choice of two
links. Link 1 has concentrations Ch(10, 0.1) and Ch(11,
0.7). Link 2 has concentrations Ch(10, 0.5) and Ch(11, 0.6).
Thus, an agent moving up a gradient indicated by the 1#
pattern would  follow link 2 because Ch(1#, 1.1) is sensed
for that link. Similarly, an agent moving up the gradient
indicated by the 11 pattern would follow link 1. This exam-
ple is crucially important for the priority discussion later in
the paper.

Swarm Routing
The swarm algorithm solution to this routing problem relies
on the movements of artificial agents on the associated
graph designed to make the global shortest path emerge.
The communications network is represented in this paper as
a weighted graph where the vertices correspond to switch-
ing nodes and the edges represent the physical links. When
a connection request is made, a colony of agents is created
and a Connection Creation Monitoring Agent (CCMA) is
created on the source node. The functions of the CCMA are
to decide when a path has emerged and when the current
path is no longer the shortest path and that path re-planning
should occur.

There are three classes of routing-related agent. Explorer
agents search for a path from a source to a destination. Allo-
cator agents allocate resources on the links used in a path.
Deallocator agents deallocate resources on the links used in
a path.

In establishing multiple point-to-point connections, the
problem becomes more constrained since the connections
consume bandwidth and that after a while, some links
might run out of available bandwidth. The extension is
quite straightforward, the graph edges have an associated
available bandwidth and a condition is added for the agents
to use a given edge: it should have enough bandwidth.
Every time a path has emerged and a connection has been
established the amount of available bandwidth is decreased
on every edge of the path thereby adding additional band-
width constraints to the graph.

Three routing problems have been solved. These are:

Point to Point Routing. For this case, the algorithm is
quite straightforward. Explorer agents are created by the
CCMA and leave the node in order to explore the network
following their local rules.

The explorer agent has two modes of behaviour. If trav-
elling towards its destination, it finds links at each node
which the agent has not yet traversed, and which have
enough bandwidth available for this connection. It selects a
link from this set based on the probability function pijk(t).
Having selected a link, the selected link is added to the tabu
list. The cost of the journey so far is updated and then the
link to the next node is traversed. An agent whose path cost
exceeds a given threshold dies.

At the destination, the explorer agent switches to trail-
laying mode. When travelling back to the source node the

agent pops the tabu list and moves over the link just popped
dropping pheromone at a constant rate proportional to the
cost of the route found. 

The CCMA at the source node maintains a set of statis-
tics relating to the set of routes that have been found so far
in both point-to-point and point to multi-point connections.
This is achieved by querying the returning agents (and
agents which are sent from the destination node to this
node) about the path that they took. This information is
maintained by their tabu list. The node records the fre-
quency of agents following a particular route over a given
time period (a moving window). It also records details such
as the total cost of the route. A good route is one for which
a proportion of agents in the current time window exceeds a
specified limit; e.g., 95%. When the limit is exceeded, the
node sends out an allocator agent that creates the connec-
tion by allocating resources in the network.

Once an allocator agent is dispatched, if it does not suc-
ceed in establishing the connection because, for example,
another connection used all the available bandwidth, it sim-
ply backtracks. In the meantime, explorer agents continue
to explore the problem space. The CCMA at the source
node may send out an allocator agent again when the path
emergence criteria are satisfied, or may choose to delay
sending the allocator out again until the problem space set-
tles to a steady state.

Chemicals laid down on a link evaporates over time.
This is controlled by a constant evaporation rate, r. 

Point to Multi-point Routing. Point to multi-point con-
nections can be regarded as  multiple point to point connec-
tions starting from the same source node. The only
modification to the previous point to point algorithm con-
cerns the allocator. Rather than sending a different allocator
for each destination, identical allocators are sent from the
source toward the destinations. Only the first allocator
passing on the link will allocate the bandwidth, and fan out
points are created on bifurcation nodes.

Cycle (or Multi-path) Routing. Cycle or multi-path rout-
ing can be regarded as two node and link disjoint paths
(excluding source and destination nodes) that connect a
source node to a destination node. The only modification to
the original algorithm for the explorer agent is that upon
reaching the destination it turns around and finds a path
back to the source node that does not use any of the nodes
or links used in the outward journey. Paths of this type are
frequently constructed for the purpose of fault tolerance.
SONET networks are constructed using cyclical paths.

The Route Allocation Algorithm
There are two phases to the movement of an explorer agent:
an outward exploring mode and a backward trail-laying
mode. The algorithm used by an explorer agent for a single
connection is shown below. Comments are shown in bold
italics within curly brackets.

1.Initialize the route finding simulation do:
   Set t:= 0



   For every edge (i,j), set Sij(t) := 0, crk := 0
   Place m agents on the source node. 
   Explorer agents are created at frequency ef
end 
2. {Start the explorer agents from the source node}
Set i := 1 {tabu list index}
    For k := 1 to m do
    Place starting node, s, of the kth agent in Tabuk[i].
3.{Migrate the explorer agents one node at a time}
Repeat until destination reached:
    Set i := i + 1
    For k :=1 to m do

Choose node j to move to with probability, pijk(t)     

    Move the kth agent to node j.
    Update explorer agent route cost: crk = crk + Cij(u)

    If  crk > crmax then kill the kth explorer agent.
Insert node j in Tabuk[i].

   At destination go to 4.
end
4. While i > 1
    Move to node Tabuk[i].
    Update pheromone levels: Sij(t) := Sij(t) + ph(crk)
    i := i - 1
end
5. At the source node do:
    If the path in Tabuk is the same as b% of 
paths in PathBuffer then create and send an allocator 

agent
    If t > Tmax then create and send an allocator agent 
for shortest path found
end

In the algorithm above, the following symbols are used:
Sij(t) is the quantity of pheromone present on the link 
between the ith and jth nodes, 
Cij(u) is the cost associated with the link between the 
ith and jth nodes at utilization, u.
crk is the cost of the route for the kth explorer agent.
Tabuk is the list of edges traversed.
Tmax is the maximum time that is allowed for a path to 
emerge. 
PathBuffer is the array of paths obtained by the (up to 
m) explorer agents. 
crmax is the maximum allowed cost of a route.

ph(crk) is the quantity of pheromone laid by the kth 
explorer agent.
pijk(t) is the probability that the kth agent will choose 

the edge from the ith to the jth node as its next hop 
given that it is currently located on the ith node.

More generally, for multiple simultaneous connection
finding, with one chemical used for each connection to be
computed, the probability, pijk(t), with which the kth agent

chooses to migrate from its current location, the ith node, to
the jth node at some time, t, is given by:

where:

αkr, β are control parameters for the kth agent and rth 
chemicals for which the kth agent has receptors, αkr = 0 
if the agent does not have a receptor for the rth chemi-
cal,
Nik(t) is a normalization term,
A(i) is the set of available outgoing links for node i,
Cij(u) is the cost of the link between nodes i and j at a 
link utilization of u,
Sijr(t) is the concentration at time t of the rth chemical 
on the link between nodes i and j,
R is a random number drawn from a uniform distribu-
tion (0,1],
R* is a number in the range (0,1],
Hij(t) is a function that returns 1 for a single value of j, 
j*, and 0 for all others at some time t, where j* is sam-
pled randomly from a uniform distribution drawn from 
A(i),
Fijk(t) is the migration function for the kth agent at time 
t at node i for migration to node j,
jmax is the link with the highest value of the product:  
Πr [Sijr(t)]

α
kr[Cij(u)]-β.

The Agent Creation Algorithm
Due to the pheromone sensitivity of the agents, it is possi-
ble for premature convergence of the route-finding algo-
rithm to occur. Sometimes, the agents can be attracted by
that trail in such a way that they will not explore other links
any more. To avoid being locked into a local optimum, the
pheromone sensitivity has to be modified. With lower pher-
omone sensitivity, the agents are more likely to explore
other links. The problem is when to lower the sensitivity
and what new pheromone sensitivity to give to the agents.

Each explorer agent encodes its α and β sensitivity val-
ues that are used in the calculation of pijk(t). Initially, these
values are selected randomly from a given range. Hence,
the population of m agents initially sent out into the net-
work has a range of sensitivity values. When these agents
return to the source node, having found a route to a given
destination, the route cost, crk, is used to update the fitness

pijk (t) = Fijk(t) / Nik(t), R < R* (EQ 1)

             = Hij(t)

(2)

Nik(t) = Σl in A(i) Filk(t) (3)

Fijk(t) = Πr[Sijr(t)]α
kr[Cij(u)]-β (4)

Fijk(t) = Πr [Sijr(t)]α
kr[Cij(u)]-β, j = jmax

          = 0                                                      otherwise

(5)



value, f(α,β,k), associated with the (α,β) pair. The equation
used to update f(α,β,k) is given by:

fnew(α,β,k) := fold(α,β,k) + γ(crk - fold(α,β,k)), 0 < γ < 1.
An agent returning with a lower route cost than the cur-

rent f(α,β,k) will cause f(α,β,k) to decrease. However, sev-
eral agents must return with the same crk value before
f(α,β,k) approaches crk. A discrete space for (α,β) was
chosen in order to ensure that updates to f(α,β,k) would
occur. A discounted feedback mechanism as shown above
is required in this system because of the stochastic nature of
the search. The same (α,β) encoding may result in several
different crk values and f(α,β,k) represents the average
over all possible routes found in the network. Clearly, with
γ set to zero it is possible to ignore previous searches with a
given encoding.

As noted earlier, the source node retains a path buffer
that contains m paths. The source node also retains m (α,β)
pairs and their associated fitness values. When new agents
need to be created and sent out to explore the network, the
fitness values are used to create new (α,β) pairs. First, par-
ent (α,β) encodings are selected based upon their f(α,β,k)
values. The lower the value of f(α,β,k), the more likely the
(α,β) encoding is to be chosen. 

The way we have achieved this is with a Genetic Algo-
rithm-like (GA) process. As stated above, each agent has its
own cost and pheromone sensitivity. At the very beginning,
all the agents have random sets of parameters that are
defined within a given range.

When an agent returns, its set of parameters is stored
along with the cost of the route found. Its parameters are
linked to the cost of the path found. This cost has the same
role as the fitness function of a GA. When creating a new
agent, the sets of all of the last returning agents are consid-
ered. An intermediate population of parameters is created:
each set has a probability of being chosen proportional to
its fitness. Some random parameters are automatically
added to the population. Given that the encoding is a bit
string, the spectrum of parameter values is discrete, a prop-
erty which is essential for the use of the updating equation
for f(α,β,k). The negative values allow agents to flee the
main trail and therefore to explore new links. If these val-
ues are useful they will be stored for future ‘breeding’, oth-
erwise they will be forgotten. Then the genetic operators
such as mutation and crossover are carried out. Finally,
agents with the corresponding set of parameters are created
and sent out to explore the graph.

This approach differs from a conventional GA in that, in
this algorithm, we are trying to avoid the convergence of
the population because it tends to lead to local optima. This
is perhaps closer to work on co-evolving populations
because the environment of the agents (the network and its
representation, the graph) is modified by their actions.
There is considerable inter-play between the pheromone
laying activities of one agent with the cost of a path found
by another agent and, therefore, the fitness associated with
the (α,β) encoding of pheromone and cost sensitivity val-
ues.

Experimental Setup
Two graphs were used during experimental investigation of
the adaptive system for the point to point, point to multi-
point and multi-path problems. These are shown in Figure 1
and Figure 2. The numbers associated with the edges in
these networks represent the costs of the edges at zero edge
utilization. Each edge is considered to have a capacity of 63
units.

For problem one, the point to point path finding scenario,
ten randomly generated traffic profiles were created for all
source-destination pairs with bandwidth requirements sam-
pled uniformly from the set {0, 2, 4, 6, 8, 10} bandwidth
units. A bandwidth requirement of zero units was taken to
mean that no path need be calculated for the source-destina-
tion pair. Paths were calculated such that the utilization of
the network increasing by the bandwidth requirements of
the traffic as paths emerged. All paths were computed in
parallel. Initial network edge utilizations of 0, 30, and 50%
were considered in order to test the effects of four different
cost functions. For problem three, the same randomly gen-
erated traffic profiles were used for experimentation. For
problem two, ten randomly generated traffic profiles were
created with either 2, 3 or 4 destinations. Bandwidth
requirements for the point to multi-point requests were
identical to problem one.

n1 n2

n3

n4

n5
n6 n7

n8

n9 n14

n10

n125

4 4

6 10

17

4
4

3
3

n13

n11

1

3

3

3

n15

4

4
3

4
4

5

7

Figure 1: Experimental Network 1

n1

n2
n3

n4

n5

n6

n7n8

n9 n11

n10

n12

3

4 4

4 3

33

3
1

1
3

3

10

10
2

7

6 2

Figure 2: Experimental Network 2



A population size of 50 was used with path emergence
considered to have occurred when 90% of the population
follow a given path. A maximum of 100 cycles of the path
finding algorithm was allowed before path calculations
were stopped and 20 agents per cycle were sent out into the
network for path finding. The value of α was allowed to
vary in the range -0.25 to 3 and the value of β was allowed
to vary in the range -0.125 to 1.5. A total of 16 bits was
allowed for the encoding of α and also for β. When adap-
tive search was contrasted with its non-adaptive counter-
part, with constant α and β, values of 2 and 1 respectively
were used. These constant values were found to be a rea-
sonable compromise for path finding. A value of 10 was
chosen for the constant of proportionality for the quantity
of chemical to be laid. An indirect representation was used
with mapping of bit strings into floating point values in the
above ranges in such a way as to cover the ranges uni-
formly. Values of 0.8 and 0.01 were used for the probabili-
ties of crossover and mutation respectively. Single point
crossover was used as the crossover operator.

Results
Comprehensive results are reported elsewhere (White
2000). However, comparing the results of using static rout-
ing to the adaptive, swarm-based routing described above,
the swarm system routed 18% more traffic in the network. 

We have observed that the algorithm with adaptive
chemical sensitivity values is able to adapt to a new situa-
tion much more quickly when using these adaptive parame-
ters. The time needed to discover the new path was
typically 30% lower (and often much, much lower) when
compared to an algorithm using static parameters. When
individual components were caused to fail, traffic was
quickly re-routed to remaining network paths.

Multi-priority Routing
In many networks we would like to route application traffic
with varying priorities. In the model proposed here, the idea
is to move existing traffic to longer routes when a higher
priority connection request enters the system. Consider, for
example, the scenario as represented in Figure 3. Here, two
routes have already been computed: AB and CD. These are
indicated with the dark arrows. A new connection request
now enters the system (FG) as shown by the white arrow.
The idea, then, is to have the AB and CD explorer agents
(which continue to explore the network even after route
allocation) to recognize that the environment has changed
and to deallocate the existing route and find one that avoids
the higher priority traffic.

In adding multi-priority routing, the explorer algorithm
proceeds as before, with one modification. The MDF of the
explorer agent does not sense the lower priority connection
pheromones but has two receptors instead of one used in
the basic routing system. In fact, we use a two class phero-
mone system. The first class of pheromones has the same
meaning as in the earlier sections of this paper, i.e., it is a
member of the Binary Array Chemistry of order N. The

second class of pheromones is a different length chemical,
i.e., it is a member of the Binary Array Chemistry of order

Np, where . In this way, the utilization (and there-
fore the cost) of a link appears lower to a higher priority
connection when compared to a lower priority connection.
This requires that chemicals have a well-defined and stan-
dardized encoding. As before, all explorer agents find the
shortest path using the algorithms described in the previous
sections and, upon path emergence, an allocator is sent out
to allocate resources in the network. The allocator differs
here from the previous design. In a multi-priority system,
the allocator deposits pheromone on its way back from the
destination having allocated resources for the connection.
The reason for the allocator depositing pheromone on its
way back from the destination is that we want to ensure that
resources have been allocated before communicating the
existence of the new connection to other connections in the
network. The allocation pheromone, or a-chemical, is
sensed by lower priority connection explorer agents. Upon
return of the allocation agent, the lower priority explorer
agents, or lp explorers as we shall refer to them, begin to
experience higher costs for links on their paths that have
had resources allocated for the higher priority connection.
With the added costs, lp explorers will deposit smaller
quantities of their connection pheromones, indicating a
reduced confidence in the path. If confidence in the path is
sufficiently reduced, i.e., it is no longer the shortest path,
the majority of lp explorers will begin to follow the new
shortest path. At this point, the CCMA will send out an
allocation agent for the new shortest path and a deallocation
agent for the old shortest path. Hence, the higher priority
connection has forced the movement of lower priority con-
nections off of its path.

The above is probably best illustrated with an example.
Consider again the network and connections shown in
Figure 3. Let the order of the connection and priority chem-
istries be 8 and 4 respectively. The latter implies that 4 pri-
ority levels exist. Let all edges in the network have unity
cost, i.e., Cij(u) = 1, except edges FD and GH which have
Cij(u) = 2. The paths indicated by dark arrows for connec-

Np N≠

A
B

C

D

E

F

G

H

Figure 3: Priority Routing



tions AB and CD are then the shortest paths and will be
found by explorer agents. Now, consider the introduction of
the high priority connection FG. The shortest path for this
connection is FE-EB-BG. Assuming that the allocator for
this connection drops 3 units of the a-chemical, lp explorer
agents for the AB connection will begin to experience
higher costs for the AE-EB path, now 4, which makes the
path longer than the shortest path, now AE-ED-DB with
cost 3. After some time, the CCMA agent for the AB con-
nection will observe that the majority of its explorer agents
follow the new shortest path and will send deallocation and
allocation agents out into the network in order to move the
connection to the new shortest path.

Obviously, the above example has been constructed to
demonstrate the path moving algorithm. However, it is sen-
sitive to the quantity of a-chemical deposited in the network
by the allocator agent for the higher priority connection. If
the concentration of a-chemical is too low, the lower prior-
ity connections sharing links with the high priority connec-
tion will not be forced to move. This limitation can be
overcome by having the CCMA monitor the quality of ser-
vice associated with the connection. If the measured quality
of service falls below the required service level agreement,
an agent is sent out into the network that deposits higher
concentrations of the a-chemical, thereby increasing the
effective cost of the links as seen by the lp explorer agents. 

Returning to the above example, assume that the high
priority connection allocation agent deposited only 1 unit of
the a-chemical. In this case, the cost of the path for the AB
connection does not appear to change, and no re-routing
occurs. The CCMA for the high priority question, seeing its
quality of service to be below the agreed value, sends an
agent out into the network to deposit a further quantity of
the a-chemical, say 2 units. The rate of increase of a-chemi-
cal concentration achieved by sending out multiple agents
that deposit a-chemical we call the priority momentum fac-
tor. This is described in (White 2000).

At this point, the quantity of a-chemical on the high pri-
ority connection links is 3, as before, and re-routing conse-
quently takes place. With a lower priority momentum factor
the required number of agents depositing a-chemical to
achieve re-routing will be higher, but re-routing will inevi-
tably occur when the route is made “expensive enough” as
seen by the lp explorer agents.

Summary
This paper has shown that multi-agent swarm techniques

can solve complex routing problems on networks. 
The main strengths of the algorithm are its robustness,

the simple nature of the agents, and that it continues search-
ing for new solutions even if a very good one was found.
The integration of Genetic Algorithms with the basic
Swarm Algorithm has improved the speed of convergence
of the routing algorithm. The generality of the SynthECA
architecture was validated when adding multiple priority
levels to the algorithm proved straightforward.

The algorithms described here work best on networks
where connections are long lived (Pagurek et al. 1998). For

the algorithm to operate on a real network, several things
are required. First, agent mobility must be supported. Sec-
ond, chemical concentrations storage is needed. Finally, on
the source node, the CCMA must be present in order to
determine whether a route has emerged.

All of the above points can be addressed with the appli-
cation of Java, a mobile agent framework and the use of
many of the Virtual Managed Component (VMC) concepts
found in (Susilo, Bieszczad and Pagurek 1998). 

Besides these requirements, consideration must be given
to the amount of bandwidth taken up by routing agents.
Research addressing resource usage has been forthcoming
(Boyer, Pagurek and White 1999).

References

Boyer, J., Pagurek, B., White, T. 1999, Methodologies for
PVC Configuration in Heterogeneous ATM Environments
Using Intelligent Mobile Agents. In Proceedings of the 1st
Workshop on Mobile Agents and Telecommunications
Applications (MATA '99).

Di Caro G. and Dorigo M. 1998, AntNet: Distributed Stig-
mergetic Control for Communications Networks. Journal
of Artificial Intelligence Research (JAIR), 9:317-365.

Pagurek B., Li Y., Bieszczad A., and Susilo G. 1998, Con-
figuration Management In Heterogeneous ATM Environ-
ments using Mobile Agents, Proceedings of the Second
International Workshop on Intelligent Agents in Telecom-
munications Applications (IATA '98).

Parunak H. Van Dyke 1998, Go to the Ant: Engineering
Principles from Naturally Multi-Agent Systems, to appear
in Annals of Operations Research. Available as Center for
Electronic Commerce report CEC-03.

Schoonderwoerd R., Holland O. and Bruten J. 1997, Ant-
like Agents for Load Balancing in Telecommunications
Networks. Proceedings of Agents '97, Marina del Rey, CA,
ACM Press pp. 209-216.

Susilo, G., Bieszczad, A. and Pagurek, B. 1998, Infrastruc-
ture for Advanced Network Management based on Mobile
Code, Proceedings IEEE/IFIP Network Operations and
Management Symposium NOMS'98, New Orleans, Luisi-
ana.

White T., Pagurek B. and Oppacher F. 1998, Connection
Management using Adaptive Mobile Agents, Proceedings
of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'98).

White T. 2000, SynthECA: A Society of Synthetic Chemi-
cal Agents, Ph.D. diss., Carleton University.


